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Abstract. The experimentally tested occurrence of probabilities that do not find a representation
within the usual Kolmogorov probability theory is mathematically formalized through the notion
of the Bell phenomenon for probability measures and for observables. Reference is made to
a physically natural definition of observables that includes both the classical and the quantum
usual versions. It is shown that even a classical framework can host the Bell phenomenon,
provided fuzzy observables are called into play.

1. Introduction

Since the 1964 paper of Bell [1] it has been clear that quantum phenomena can give rise
to probabilistic behaviours that cannot be viewed as merely expressing some degree of
ignorance inside a standard deterministic frame, such as a ‘non-contextual’ local hidden-
variable theory. The growth of interest on the issue of Bell inequalities made it also
clear that, quite independently from the specific physical content of the (Bohm version of
the) Einstein–Podolski–Rosen correlation, one can tackle the more general mathematical
problem of the conditions that allow the representation of a given set of probabilities inside
the standard Kolmogorov probability theory. The preferred form of these conditions is still
in terms of requiring some suitable linear combination of the given probabilities to lie inside
a numerical interval, which are what we may call Bell-type inequalities [2–4]. Quantum
mechanics provides a variety of situations in which probabilities arise which do not satisfy
these conditions, thus escaping a representation within the standard Kolmogorov probability
theory. It is this feature that, loosely speaking, will be captured by what we shall define in
the following as the ‘Bell phenomenon’.

The description of a physical system can be based on the structure of the convex set
S of its states, an observable being defined as an affine map ofS into the convex set of
the probability measures on the measurable space which collects the possible values of
that observable. Indeed the physical notion of an observable corresponds to specifying its
possible outcomes and the probabilities of their occurrence, for each state of the physical
system. The classical or quantum nature of a model is coded in the convex structure ofS,
which is a simplex in the classical case while it cannot be such in the quantum one, in view
of the well known phenomenon of the non-unique decomposition of quantum mixtures into
pure states. In sections 3 and 5 the notion of the Bell phenomenon will be made precise with
reference to probability measures on measurable spaces and with reference to the mentioned
definition of observables. Section 4 will deal with the particular case of probability measures
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on spaces consisting of just two points, a framework that allows a comparison of the Bell
phenomenon with similar notions occurring in the literature.

The Bell phenomenon appears historically as a distinguishing feature of the quantum
context; no analogue is generally acknowledged in classical frameworks. Could it be hosted
in a classical context? This question takes a particular motivation in view of the fact that
quantum mechanics admits an extension of classical nature, as discussed in [5, 6], and briefly
reviewed in the next section. The extended classical model has a wider set of observables,
but each quantum observable finds its representative in the extended model and the relevant
quantum features are preserved in the classical extension. As shown in section 6 the Bell
phenomenon is carried into the classical context, but fuzzy observables are called into play.

2. State-observable structure

In this section we summarize, without proofs, a number of results given in [5, 6].
Let S be the convex set formed by the states of the physical system under discussion.

It is natural to define an observable as an affine map ofS into the convex setM+
1 (4) of

all the probability measures on some measurable space4 in which the observable takes
values (typically the real line). Indeed, the notion of observable carries the specification of
the possible measurement results and of their probability distribution for each state of the
physical system. With some abuse of notation we write4 for a measurable space in place
of (4, B(4)) whereB(4) stands for theσ -algebra of measurable subsets of4, and we
shall assume that the one-point subsets of4 are measurable. This definition of observable
is not new (see, e.g., [7–12]) and encompasses the standard definitions used in quantum and
in classical mechanics. For a fixedX ∈ B(4), the pair formed byX and by an observable
B determines an affine functionEB,X : S → [0, 1] defined byEB,X(α) := (Bα)(X), α ∈ S:
it is called an effect.

In the quantum caseS is the setSQ of all density operators on a separable Hilbert space
H. Typical of SQ is the non-unique decomposition of mixed states into pure ones, which
mirrors the fact thatSQ is not a simplex. The effects onSQ are known [12] to be in one-to-
one correspondence with the positive operators ofH which have mean value not bigger than
1: explicitly, if P is such an operator andD ∈ SQ then the function Tr(DP) : SQ → [0, 1]
is the effect associated withP. Thus, our notion of observable, when referred toSQ, gives
back the so-called positive operator valued (POV) measures, which are typical ingredients
of the ‘operational’ approach to quantum mechanics: we also quote the recent volume [13]
for reference to the relevant literature. Notice that when positive operators are restricted to
projectors and the measurable space4 is specified as the real lineR then thePOV measures
become the familiarPV measures onR, hence they correspond to the self-adjoint operators
of H (via the spectral theorem). Therefore, in the case of Hilbert-space quantum mechanics,
the definition of observable we are adopting here is fully equivalent to the operational one,
and it includes as a special case the traditional observables represented by self-adjoint
operators.

In the classical case the setS of states takes the typical structure of the setM+
1 (�) of

all the probability measures on the ‘phase space’� of the physical system. Of course�
is understood as a measurable space, and we additionally assume that the one-point subsets
of � are measurable. The measures concentrated at one point of� (the Dirac measures)
correspond to the pure states and the unique decomposability of mixed states into pure
states becomes the distinguishing feature that mirrors the simplex nature of the convex set
M+

1 (�). According to our definition, an observable taking values in the measurable space
4 is now an affine map ofM+

1 (�) into M+
1 (4). The observableB : M+

1 (�) → M+
1 (4)
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will be called regular if

Bµ =
∫

�

(Bδω) dµ(ω)

for any µ ∈ M+
1 (�), whereδω denotes the Dirac measure concentrated atω ∈ �, and the

integral is understood in the sense that

(Bµ)(X) =
∫

�

(Bδω)(X) dµ(ω)

for any measurable subsetX of 4. This equality can be read by saying that the value of the
effectEB,X at the stateµ is the integral, with respect to the measureµ, of the (measurable)
function (Bδω)(X) : M+

1 (�) → [0, 1]. This way of reading the above equality shows the
equivalence between the notion of regularity given here and the one used in [6].

In the following we shall be mainly concerned with regular observables. Among them,
one has to outline the particular family of the observables that capture a notion of sharpness.
Following a traditional terminology we shall say (as in [6] and [13]) that an observable is
sharp when its effects are extreme elements of the convex set of all effects. In this respect
it is worth remarking that the usual observables employed in standard classical mechanics
and in classical probability theory are regular observables generated by functions from�

into 4 in the sense that for any such observableB there is a unique functionfB : � → 4

such thatBδω = δfB(ω) for everyω ∈ �. In other words, the value of the effectEB,X at the
stateµ takes the form

(Bµ)(X) =
∫

�

δfB(ω) dµ(ω) =
∫

�

χf −1
B (X)(ω) dµ(ω) = µ(f −1

B (X)) (1)

whereχY is the characteristic function ofY ∈ B(4). An observable like that is sharp (see
theorem 1 of [6]) and one may wonder whether any regular sharp observable must have this
form. The answer is yes [14, 15], provided one makes the additional assumption that the
extreme points ofM+

1 (4) coincide with the Dirac measures on4. Actually this assumption
is met by any measurable space4 contained inRn (n an arbitrary positive integer) with the
σ -algebra of Borel sets, hence in all cases of physical interest. This is why in the following
the sharpness of a regular observableB will be equivalently understood as the property that
for eachω ∈ � there exists a uniqueξ ∈ 4 such thatBδω = δξ .

The regular observables which are not sharp will be calledfuzzy. This name is motivated
by the fact that when a regular observable is not sharp then at least some of its effects will
define fuzzy subsets of�, in the sense of Zadeh’s fuzzy set theory [16]. Indeed, the
effects of a regular sharp observable are characterized by the above expression (1), whose
restriction to the Dirac measures on� reads

(Bδω)(X) = δω(f −1
B (X))

so thatEB,X defines a 0, 1-function on�, hence an ordinary subset of�. If a regular
observable is not sharp then, at least for someX ∈ B(4) andω ∈ �, the quantity(Bδω)(X)

will not be restricted to the values 0, 1, so thatEB,X will define a function on� taking
values in the interval [0, 1], hence a fuzzy subset of�. (The reader might ask why we have
not used the word ‘unsharp’ to qualify an observable which is not sharp: the reason is that
‘unsharp’ was often used, as in [13], with a slightly different meaning.)

In general, a physical system admits different levels of description. For instance
one might include or ignore some degrees of freedom; as another example, the quantum
description of a system which is part of a compound system might be made on the basis
of the Hilbert space of the subsystem or on the basis of the Hilbert space of the compound
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system. In other words, different levels of coarse graining can be adopted. We say that the
descriptive model based on the convex set of statesS admits an extension based on a setS̃

of states when there exists an affine surjective mapR : S̃ → S. Such a map will be called
the reduction map, for it reduces theS̃-based model to theS-based one. So, the extended
model makes use of a richer set of states, and the reduction mapR determines, in general,
a many-to-one correspondence betweenS̃ andS: the elements of̃S mapped into the same
element ofS form a ‘coarse grain’. SincẽS is richer thanS, the set of observables oñS
will be, in turn, richer than the set of observables onS. Indeed, ifB : S → M+

1 (4) is an
observable of theS-based model then the map compositionB̃ := B ◦ R is obviously an
affine mapping ofS̃ into M+

1 (4), hence an observable of thẽS-based model. So, every
observable onS finds a representative among the observables onS̃ (not the converse, of
course).

The fact that we can haveS quantum, that is of the formSQ, andS̃ classical, that is of
the formM+

1 (�) for some measurable space� is remarkable. In this sense we speak of a
classical extension of quantum mechanics. Explicitly, if one considers the measurable space
∂SQ formed by the extremal elements ofSQ (that is the pure states, or the one-dimensional
projectors on the Hilbert spaceH) then there exists [6] an affine surjective map

RM : M+
1 (∂SQ) → SQ (2)

which carries the canonical classical extension of quantum mechanics. The reduction map
has been denotedRM to remind one that it was studied by Misra [17] some 20 years ago.

It turns out that the statistical distribution of results of a quantum observable and of
its classical representative are the same, and the typical quantum features are preserved
in the classical extension: so, for example, whenever two quantum observables obey an
uncertainty relation so do their classical representatives (with the same uncertainty limit).
This is not paradoxical because the classical representatives of the quantum observables are
regular but not sharp: they are fuzzy. As it will be seen in section 6, this is also why the
violation of Bell-type inequalities, typical of the quantum context, can survive in a classical
framework.

3. The Bell phenomenon for measures

Consider a finite collection{41, 42, . . . , 4n} of measurable spaces. The Cartesian product
4(1,2,...,n) := 41 × 42 × · · · × 4n has the natural structure of measurable space with
B(4(1,2,...,n)) defined as the smallestσ -algebra of subsets of4(1,2,...,n) containing all
‘rectangles’X1 × X2 × · · · × Xn with Xi ∈ B(4i), i = 1, 2, . . . , n. If {i1, i2, . . . , ir} ⊂
{1, 2, . . . , n}, i1 < i2 < · · · < ir , then the product space4i1 × 4i2 × · · · × 4ir , with the
σ -algebra of measurable subsets defined as above, will be denoted4(i1,i2,...,ir ).

In the following the notion of probability measures on measurable spaces will be
repeatedly used: we will simply say ‘measures’ when meaning probability measures.

Definition 1. A consistent family of measures on the product of measurable spaces
4(1,2,...,n) := 41×42×· · ·×4n is a collectionM of measures on some of the product spaces
4(i1,i2,...,ir ) := 4i1×4i2×· · ·×4ir with i1 < i2 < · · · < ir and{i1, i2, . . . , ir} ⊆ {1, 2, . . . , n},
such that

(i) to any product space4(i1,i2,...,ir ) there corresponds at most one (i.e. one or none)
probability measureµ(i1,i2,...,ir ) on the space4(i1,i2,...,ir );

(ii) if µ(i1,i2,...,ir ), µ(j1,j2,...,js ) ∈ M and {i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} =
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{k1, k2, . . . , kt } 6= ∅ then

π
(k1,k2,...,kt )

(i1,i2,...,ir )
µ(i1,i2,...,ir ) = π

(k1,k2,...,kt )

(j1,j2,...,js )
µ(j1,j2,...,js )

whereπ
(k1,k2,...,kt )

(i1,i2,...,ir )
: M+

1 (4(i1,i2,...,ir )) → M+
1 (4(k1,k2,...,kt ) is the marginal projection;

(iii) for every i ∈ {1, 2, . . . , n} there is in M a measureµ(i) on 4i : these ‘one-
dimensional’ measuresµ(1), µ(2), . . . , µ(n) will be called the basic elements ofM.

Let us make a few remarks.

Remark 3.1. Condition (ii) sounds as if it is a consistency requirement. The marginal
measureπ(k1,k2,...,kt )

(i1,i2,...,ir )
µ(i1,i2,...,ir ) is defined by taking the ‘rectangle’Xk1 × Xk2 × · · · × Xkt

∈
B(4(k1,k2,...,kt )) and setting

(π
(k1,k2,...,kt )

(i1,i2,...,ir )
µ(i1,i2,...,ir ))(Xi1 × Xi2 × · · · × Xir ) = µ(i1,i2,...,ir )(Cyl(Xk1 × Xk2 × · · · × Xkt

))

where the cylinder set Cyl(Xk1 × Xk2 × · · · × Xkt
) with baseXk1 × Xk2 × · · · × Xkt

is the
‘rectangle’Yi1 × Yi2 × · · · × Yir in B(4(i1,i2,...,ir )) whereYl = Xl if l ∈ {k1, k2, . . . , kt } and
Yl = 4l if l /∈ {k1, k2, . . . , kt }. The marginal measureπ(k1,k2,...,kt )

(i1,i2,...,ir )
µ(i1,i2,...,ir ) is then defined

at any element ofB(4(k1,k2,...,kt )) by the standard methods of measure theory (see, e.g., [18],
theorem 11.3).

Remark 3.2. Requirement (iii) is a simplifying feature and looks natural in view of the
physical interpretation discussed in the following; in particular it says that the sequence of
value spaces41, 42, . . . , 4n is not redundant since all of them are called into play by the
family M.

Remark 3.3. The definition of a consistent family of measures does not imply that such a
family has to contain a measure on every marginal product space4(i1,i2,...,ir ).

Remark 3.4. The above notion of a consistent family of measures generalizes the one used
in the standard theory of stochastic processes, where one is faced with all the ‘places’ in the
hierarchy of product spaces occupied by measures, so that a consistent family of measures
contains exactly one measure for every product space constructed from the given sequence
of measurable spaces.

It is clear that in the case when the familyM contains a measureµ(1,2,...,n) on
4(1,2,...,n) then this measure generates all the members of the family by the mechanism
of marginal projections. In such a caseM is said to be complete, andµ(1,2,...,n) is called
the generating measure ofM. If the consistent familyM is not complete, namely if it
does not contain a measure on4(1,2,...,n), then the question arises whether it can be made
complete by the addition of a suitable measure on4(1,2,...,n), namely whether there exists
µ(1,2,...,n) ∈ M+

1 (4(1,2,...,n)) such thatM ∪ {µ(1,2,...,n)} is a complete consistent family of
measures. In the case when such aµ(1,2,...,n) exists then it generates all the members ofM
by the mechanism of marginal projections, and we say thatM admits a generating measure.

The relevant and not so obvious fact is that there are consistent families of measures
which do not admit a generating measure: in other words they cannot be thought of as sub-
families of complete families. When a consistent family of measuresM does not admit a
generating measure we say that it exhibits theBell phenomenon. An explicit example will
be provided in the next section.

Here we add some further remarks.

Remark 3.5. When referred to the basic elementsµ(1), µ(2), . . . , µ(n) of M (or to some
of them) the definition of generating measure reduces to the familiar definition of joint
measure: indeed a measureµ(1,2,...,n) on 4(1,2,...,n) is a joint measure for theµ(i)s
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if µ(i) = π
(i)

(1,2,...,n)µ
(1,2,...,n). It is known that the set of ‘one-dimensional’ measures

µ(1), µ(2), . . . , µ(n) always admits at least one joint measure: hence a consistent family
M formed only by its basic elementsµ(1), µ(2), . . . , µ(n) certainly admits a generating
measure.

Remark 3.6. Though the basic measures{µ(1), µ(2), . . . , µ(n)} of a consistent familyM
always determine at least one joint measure on4(1,2,...,n), this joint measure need not be a
generating measure for the whole familyM when the latter contains other measures beyond
the basic elements.

Remark 3.7. If, besides the basic measures{µ(1), µ(2), . . . , µ(n)}, M contains only
measures having the form of products of theµ(i)s, thenM admitsµ(1) × µ(2) × · · · × µ(n)

as a generating measure. This follows from the fact that a marginal projection of a product
measure is still a product measure.

Remark 3.8. A generating measure of a consistent family of measuresM need not be
unique. Actually, when there are more than one then there are infinitely many because any
convex combination of two generating measures is still a generating measure. However we
have the following theorem.

Theorem 1. If for any {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} the set{µ(i1), µ(i2), . . . , µ(ir )} of basic
measures possesses only one joint measure thenM admits a unique generating measure.

Proof. Noticing that a generating measure is also a joint measure of the basic elements,
we have that the uniqueness of the latter entails the uniqueness of the former, if it exists.
However, its existence comes from the fact that anyµ(i1,i2,...,ir ) ∈ M is in turn the unique
joint measure ofµ(i1), µ(i2), . . . , µ(ir ) so that it must coincide with the projected measure
π

(i1,i2,...,ir )

(1,2,...,n) µ(1,2,...,n). �

4. The case of events

In this section we restrict ourselves to the special case of measurable spaces consisting of
just two points of the real line, say4i = {ξ ′

i , ξ
′′
i }, i = 1, 2, . . . , n. This two-valuedness

fits the notion of ‘event’ which either occurs or does not occur: ifµ(i) is a measure on
4i we can agree thatµ(i)(ξ ′

i ) (respectivelyµ(i)(ξ ′′
i )) gives the probability of occurrence

(respectively non-occurrence) of theith event. Similarly, ifµ(i1,i2,...,ir ) is a measure on
4i1 × 4i2 × · · · × 4ir , then the numberµ(i1,i2,...,ir )(ξ ′

i1
, ξ ′

i2
, . . . , ξ ′

ir
) will be naturally read

as the probability of the joint occurrence of the events labelled byi1, i2, . . . , ir , while the
numberµ(i1,i2,...,ir )(ξ ′

i1
, ξ ′

i2
, . . . , ξ ′′

ir
) will represent the probability of joint occurrence of the

eventsi1, i2, . . . , ir−1 and of non-occurrence of the eventir , and so on.
We come now to an explicit example of a consistent family of measures that exhibits

the Bell phenomenon (another example will be given in section 6). Consider four
measurable spaces41, 42, 43, 44 and take the consistent family of measuresM :=
{µ(1), µ(2), µ(3), µ(4), µ(1,3), µ(1,4), µ(2,3), µ(2,4)}. This family has the typical structure
encountered in the so-called Einstein–Podolski–Rosen (EPR) spin correlation: we are going
to check that, for a particular choice of its elements,M exhibits the Bell phenomenon,
namely it does not admit a generating measure.

SupposeM admits a generating measureµ(1,2,3,4) and notice that this measure would be
defined on the 16-point space4(1,2,3,4) = 41 ×42 ×43 ×44. A point of this space will be
denoted{ξ1, ξ2, ξ3, ξ4} whereξi takes values in{ξ ′

i , ξ
′′
i }, i = 1, 2, 3, 4. The elements ofM

would now be obtained as marginal measures ofµ(1,2,3,4); so, for example,µ(1)(ξ1) would
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be the sum ofµ(1,2,3,4)(ξ1, ξ2, ξ3, ξ4) over ξ2, ξ3, ξ4 while µ(1,3)(ξ1, ξ3) would be the sum of
µ(1,2,3,4)(ξ1, ξ2, ξ3, ξ4) over ξ2, ξ4. Then, by direct inspection, one sees that the quantity

µ(1)(ξ ′
1) + µ(3)(ξ ′

3) − µ(1,3)(ξ ′
1, ξ

′
3) − µ(1,4)(ξ ′

1, ξ
′
4) − µ(2,3)(ξ ′

2, ξ
′
3) + µ(2,4)(ξ ′

2, ξ
′
4) (3)

is the sum of the values taken byµ(1,2,3,4) at the points(ξ ′
1, ξ

′
2, ξ

′′
3 , ξ ′

4), (ξ ′
1, ξ

′
2, ξ

′′
3 , ξ ′′

4 ),
(ξ ′

1, ξ
′′
2 , ξ ′

3, ξ
′′
4 ), (ξ ′

1, ξ
′′
2 , ξ ′′

3 , ξ ′′
4 ), (ξ ′′

1 , ξ ′
2, ξ

′
3, ξ

′
4), (ξ ′′

1 , ξ ′
2, ξ

′′
3 , ξ ′

4), (ξ ′′
1 , ξ ′′

2 , ξ ′
3, ξ

′
4), (ξ ′′

1 , ξ ′′
2 , ξ ′

3,
ξ ′′

4 ). So quantity (3) is the value taken byµ(1,2,3,4) at a (eight point) subset of the 16-point
space4(1,2,3,4) space, what implies that this quantity must lie between 0 and 1. But this
condition can be violated by making, for instance, the explicit choice

µ(i)(ξ ′
i ) = 1

2 i = 1, 2, 3, 4

µ(1,3)(ξ ′
1, ξ

′
3) = µ(1,4)(ξ ′

1, ξ
′
4) = 1

4

(
1 −

√
2

2

)
µ(2,3)(ξ ′

2, ξ
′
3) = 0 µ(2,4)(ξ ′

2, ξ
′
4) = 1

4

(4)

(notice that the remaining values follow fromµ(i)(ξ ′
i ) + µ(i)(ξ ′′

i ) = 1, µ(1,3)(ξ ′
1, ξ

′
3) +

µ(1,3)(ξ ′
1, ξ

′′
3 ) = µ(1)(ξ ′

1) = 1
2, and so on).

Thus we see that, with the above choice, the consistent familyM does not admit a
generating measure, hence it exhibits the Bell phenomenon.

The condition that the quantity (2) lies between 0 and 1 (and the analogous conditions
obtained by interchanging index 1 with index 2, or 3 with 4, or by making both
interchangings) is just the familiar Bell inequality. More specifically it has the form which
has already been studied by Clauser and Horne in a well known paper [19] and which has
then often been referred to as the Clauser–Horne inequality.

In view of the widespread opinion that the issue of locality is an important ingredient
to produce Bell inequalities, one might ask why it did not play any role in our approach.
A similar question applies also to other deductions of Bell inequalities, as in [2] where
a discussion can be found. In short, when we deal with theEPR spin correlation for a
two-particle system and with the four observables corresponding to measuring the spin
of one particle along the direction 1 or 2 and the spin of the other particle along the
direction 3 or 4, the last four terms in expression (3) represent conditionals on different,
alternative measurements. As such, there is no logical need to represent them into a single
classical Kolmogorovian probability space. With the words of our approach, there is no
need to have them coming from a single generating measure. It is when one embeds this
particular experimental situation into the framework of hidden variable theories (as in Bell’s
original paper) that the issue of locality emerges as a physically natural argument in favour
of collapsing these conditional probabilities into absolute probabilities associated with a
common state of the physical system. And this collapse corresponds to the fulfilment of
Bell inequalities.

The particular framework considered in this section, with dichotomic measurable spaces
4i = {ξ ′

i , ξ
′′
i }, allows a comparison of the notion of the Bell phenomenon with parallel

notions occurring in the literature. LetM be a consistent family of measures on the
product of measurable spaces{ξ ′

1, ξ
′′
1 } × {ξ ′

2, ξ
′′
2 } × · · · × {ξ ′

n, ξ
′′
n } and consider the collection

of numbers

P := {µ(i1,i2,...,ir )(ξ ′
i1
, ξ ′

i2
, . . . , ξ ′

ir
)|µ(i1,i2,...,ir ) ∈ M}.

As said above, the quantityµ(i1,i2,...,ir )(ξ ′
i1
, ξ ′

i2
, . . . , ξ ′

ir
) is naturally interpreted as the

probability of the joint occurrence of the events labelled byi1, i2, . . . , ir . In view of the
definition of a consistent family of measures,P will include the probabilitiesµ(i)(ξ ′

i ),
i = 1, 2, . . . , n of occurrence of the events associated with then basic elements ofM.
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A collection such asP is called a ‘correlation sequence of probabilities’ in [2–4], and
it is said to admit a Kolmogorovian (or classical) representation if there exist a Boolean
algebraL, a measureν on L, and elementsa1, a2, . . . , an ∈ L such that

µ(i)(ξ ′
i ) = ν(ai) i = 1, 2, . . . , n

µ(i1,i2,...,ir )(ξ ′
i1
, ξ ′

i2
, . . . , ξ ′

ir
) = ν(ai1 ∩ ai2 ∩ · · · ∩ air )

(we use the set intersection symbol∩ having in mind a realization ofL in terms of subsets
of a set).

Now we have the following theorem.

Theorem 2. M admits a generating measure if and only ifP has a Kolmogorovian
representation.

Proof. First assume thatM has a generating measureµ(1,2,...,n). Then

µ(i1,i2,...,ir )(ξ ′
i1
, ξ ′

i2
, . . . , ξ ′

ir
) = (π

(i1,i2,...,ir )

(1,2,...,n) µ(1,2,...,n))(ξ ′
i1
, ξ ′

i2
, . . . , ξ ′

ir
)

= µ(1,2,...,n)(Cyl({ξ ′
i1
} × {ξ ′

i2
} × · · · × {ξ ′

ir
}).

This means that the correlation sequenceP has a Kolmogorovian representation over the
Boolean algebra of measurable subsets of{ξ ′

1, ξ
′′
1 } × {ξ ′

2, ξ
′′
2 } × · · · × {ξ ′

n, ξ
′′
n } by means of

the measureµ(1,2,...,n). Conversely, assume thatP has a Kolmogorovian representation in
terms of the Boolean algebraL, of the measureν, and of the elementsa1, a2, . . . , an. Then
define a measureµ(1,2,...,n) on {ξ ′

1, ξ
′′
1 } × {ξ ′

2, ξ
′′
2 } × · · · × {ξ ′

n, ξ
′′
n } as follows:

µ(1,2,...,n)(ξ ′
1, ξ

′
2, . . . , ξ

′
n) = ν(a1 ∩ a2 ∩ · · · ∩ an)

µ(1,2,...,n)(ξ ′
1, ξ

′
2, . . . , ξ

′
n−1, ξ

′′
n ) = ν(a1 ∩ a2 ∩ · · · ∩ an−1 ∩ a⊥

n ) etc

wherea⊥
n is the complement ofan in L. The so-defined measureµ(1,2,...,n) clearly generates

M. �
In [2–4] it is shown that the notion of Kolmogorovian representability of correlation

sequences of probabilities provides the natural framework and generalization of the familiar
Bell inequalities (the latter being particular conditions of Kolmogorovian representability):
the discussion above shows that the notion of the Bell phenomenon for a consistent family
of measures encompasses the idea of Bell-type inequalities.

5. The Bell phenomenon for observables

Let S be a convex set of states as in section 2. Consider again a finite collection
{41, 42, . . . , 4n} of measurable spaces, with the Cartesian product4(1,2,...,n) := 41 ×
42 × · · · × 4n as in section 3.

Definition 2. A consistent family of observables onS, with value space4(1,2,...,n), is a
collectionO of affine mappings ofS into some of the convex setsM+

1 (4(i1,i2,...,ir )), where
i1 < i2 < · · · < ir and{i1, i2, . . . , ir} ⊆ {1, 2, . . . , n}, such that:

(i) to any sequence{i1, i2, . . . , ir} there corresponds at most one (i.e. one or none) affine
mapping ofS into M+

1 (4(i1,i2,...,ir )) that we denoteB(i1,i2,...,ir );
(ii) if B(i1,i2,...,ir ), B(j1,j2,...,js ) ∈ O and {i1, i2, . . . , ir} ∩ {j1, j2, . . . , js} =

{k1, k2, . . . , kt } 6= ∅ then

π
(k1,k2,...,kt )

(i1,i2,...,ir )
◦ B(i1,i2,...,ir ) = π

(k1,k2,...,kt )

(j1,j2,...,js )
◦ B(j1,j2,...,js )

whereπ
(k1,k2,...,kt )

(i1,i2,...,ir )
: M+

1 (4(i1,i2,...,ir )) → M+
1 (4(k1,k2,...,kt ) is the marginal projection;

(iii) for every i ∈ {1, 2, . . . , n} there is inO an elementB(i) : S → M+
1 (4i): the

observablesB(1), B(2), . . . , B(n) will be called the basic elements ofO.
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If the consistent family of observablesO contains an elementB(1,2,...,n) : S →
M+

1 (4(1,2,...,n)), then this observable generates all the members of the family by the
mechanism of marginal projections: indeed one would haveB(i1,i2,...,ir ) = π

(i1,i2,...,ir )

(1,2,...,n) ◦
B(1,2,...,n). In such a caseO is said to be complete andB(1,2,...,n) is called the generating
element ofO. If the consistent familyO is not complete, then the question arises whether
there exists an elementB(1,2,...,n) : S → M+

1 (4(1,2,...,n)) such thatO ∪ {B(1,2,...,n)} is a
complete consistent family of observables. When such aB(1,2,...,n) does exist then it
generates all the members ofO by the mechanism of marginal projections, and we say
that O admits a generating observable.

The issue of completeness, and of a generating element, of a consistent family of
observablesO reminds us of the parallel issue for measures discussed in section 3. There
are analogies, but also differences, as shown by the following remarks.

Remark 5.1. When referred to the basic elementsB(1), B(2), . . . , B(n) of O (or to some
of them) the definition of generating observable reduces to the familiar definition of
joint observable: given the finite collection of observablesB(i) : S → M+

1 (4i), i =
1, 2, . . . , n, we say indeed thatB(1,2,...,n) : S → M+

1 (4(1,2,...,n) is a joint observable of
B(1), B(2), . . . , B(n) if

B(i) = π
(i)

(1,2,...,n) ◦ B(1,2,...,n) i = 1, 2, . . . , n.

When a joint observable exists it is also customary [5] to say that theB(i)s are mutually
comeasurable (or coexistent [13]). The notion of a generating observable generalizes the one
of a joint observable: indeed, ifB(1,2,...,n) is a joint observable ofB(1), B(2), . . . , B(n) then it
is a generating observable of the consistent family of observables{B(1), B(2), . . . , B(n)}; and
conversely, whenever a consistent family of observablesO admits a generating observable
the latter is a joint observable of the basic elements ofO.

Remark 5.2. Within the level of generality considered here (in particular aboutS) the
existence of a joint observable is by no means guaranteed. Think, for example, of the
quantum context whereS = SQ, and consider two quantum observables associated with non-
commuting self-adjoint operators: they do not have, in this context, any joint observable.

Remark 5.3. Even in one case of the basic observablesB(1), B(2), . . . , B(n) of a consistent
family O admitting a joint observable, this need not be a generating observable for the
whole family O when the latter contains other observables beyond the basic ones.

Remark 5.4. A generating observable of a consistent familyO need not be unique.
Actually, when there are more than one then there are infinitely many because any convex
combination of two generating observables is still a generating observable.

However, we have the following

Theorem 3. If for any {i1, i2, . . . , ir} ⊆ {1, 2, . . . , n} the set{B(i1), B(i2), . . . , B(ir )} of basic
observables of the consistent family of observablesO possesses only one joint observable
thenO admits a unique generating observable.

Proof. Let B(1,2,...,n) be the unique joint observable of the collection{B1, B2, . . . , Bn}
of all the basic elements ofO. If B(i1,i2,...,ir ) ∈ O then it has to be the unique joint
observable of the collection{B(i1), B(i2), . . . , B(ir )} of basic observables. On the other hand,
π

(i1,i2,...,ir )

(1,2,...,n) ◦ B(1,2,...,n) is a joint observable of the same set{B(i1), B(i2), . . . , B(ir )} of basic

observables. Hence the uniqueness assumption impliesπ
(i1,i2,...,ir )

(1,2,...,n) ◦ B(1,2,...,n) = B(i1,i2,...,ir ),
so thatB(1,2,...,n) is the unique generating observable ofO. �
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Come now to a connection between observables and measures. The elements of a
consistent family of observablesO are defined as affine mappings ofS into the set of
measures on some measurable space: so, if one evaluates all the members ofO at some
fixed α ∈ S one gets a family of measures, to be denotedM(O, α), which is clearly a
consistent family of measures in the sense of section 3. It is now clear that ifO admits a
generating observableB(1,2,...,n) then, for everyα ∈ S, B(1,2,...,n)α is a generating measure
for M(O, α). Therefore, ifO admits a generating observable then there is noα ∈ S

such thatM(O, α) exhibits the Bell phenomenon; conversely, if for someα ∈ S the
family of measuresM(O, α) shows the Bell phenomenon thenO cannot admit a generating
observable.

In view of these facts it is natural to say that the consistent family of observablesO
shows theBell phenomenon for observablesif at someα ∈ S the family M(O, α) exhibits
the Bell phenomenon for measures, i.e.M(O, α) has no generating measure. WhenO has
no generating observable we say thatO exhibits theweak Bell phenomenon. Clearly, for a
consistent family of observables the Bell phenomenon implies the weak Bell phenomenon,
but not the converse.

In the standard quantum context, where the states are density operators of some Hilbert
spaceH and the observables correspond to self-adjoint operators, the notion of weak Bell
phenomenon would simply reflect the existence inO of non-commuting observables.

To provide an example of a consistent familyO showing the Bell phenomenon one
could consider the familiarEPR situation: takeH = C2 ⊗ C2 and the family of observables

O = {B(1), B(2), B(3), B(4), B(1,3), B(1,4), B(2,3), B(2,4)} (5)

whereB(1) = σ ·a⊗I , B(2) = σ ·b⊗I , B(3) = I ⊗σ ·b, B(4) = I ⊗σ ·c, B(1,3) is the unique
joint observable of the pair of commuting observablesB(1), B(3), and similarly forB(1,4),
B(2,3), B(2,4). We have denoteda, b, c three unit vectors inR3 and σ the vector whose
components are the Pauli matrices. The value space ofB(i), i = 1, 2, 3, 4 is the two-point
space4i = {ξ ′

i , ξ
′′
i } with ξ ′

i = 1, ξ ′′
i = −1 (we use the same notation as in section 4), while

the value space ofB(i,j), i = 1, 2, j = 3, 4, is the four-point space4(i,j) = 4i × 4j . The
explicit form of B(1,3), evaluated at a pure stateα of C2 ⊗ C2, reads

(B(1,3)α)(ξ ′
1, ξ

′
3) = (α, Pa ⊗ Pcα) (B(1,3)α)(ξ ′

1, ξ
′′
3 ) = (α, Pa ⊗ P−cα)

(B(1,3)α)(ξ ′′
1 , ξ ′

3) = (α, P−a ⊗ Pcα) (B(1,3)α)(ξ ′′
1 , ξ ′′

3 ) = (α, P−a ⊗ P−cα)

whereP±a = 1
2(I ±σ ·a) is the projector inC2 on the eigenvector ofσ ·a with eigenvalues

±1 (similarly for P±c), and(α, P±a ⊗ P±cα) stands for the scalar product inC2 ⊗ C2. The
explicit values ofB(1,4), B(2,3), B(2,4) at a pure stateα have analogous expressions. Taking
for α the singlet (i.e. the zero spin) state inC2 ⊗ C2 one gets

(α, Pa ⊗ Pcα) = (α, P−a ⊗ P−cα) = 1
4(1 − a · c)

(α, Pa ⊗ P−cα) = (α, P−a ⊗ Pcα) = 1
4(1 + a · c)

and making the further choice ofa, b, c planar witha · b = a · c =
√

2
2 , b · c = 0 one

would associate with the family of observables given in equation (5) a familyM(O, α) of
measures that would exactly reproduce the example given in equation (4), hence an example
of Bell phenomenon for measures.

If one takesb = c, so thatB(3) = B(4), B(1,3) = B(1,4), B(2,3) = B(2,4), it is easily seen
that all the Bell-type inequalities (obtained by requiring that quantities as in equation (3)
lie between 0 and 1) are satisfied so that there is no Bell phenomenon, but the family of
observablesO shows the weak Bell phenomenon becauseB(1) andB(2) do not admit a joint
observable, henceO does not admit a generating observable.
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6. The Bell phenomenon in classical frames

In the last section the notion of the Bell phenomenon for observables has been introduced
within a general frame, without any special assumption about the underlying convex set of
statesS. Here we come to the relevant case in whichS is classical, that isS takes the form
of the simplexM+

1 (�) for some measurable space�. An observable with value space4
now becomes an affine mapping ofM+

1 (�) into M+
1 (4). As already stated in section 2,

the classical frame contains the class of regular observables: these are the observables we
shall be concerned with. They can be divided into sharp and fuzzy ones, according to the
definition given in section 2.

Definition 3. Let B(i) : M+
1 (�) → M+

1 (4i), i = 1, 2, . . . , n, be regular observables.
Let P be the map from the set{δω|ω ∈ �} of the Dirac measures on� into M+

1 (41 ×
42 × · · · × 4n) defined byPδω := ×iB

(i)δω. The mapP is integrable and the integral∫
�
(P δω) dµ(ω) uniquely defines (see [6], theorem 2) a regular observable which maps

M+
1 (�) into M+

1 (41 ×42 ×· · ·×4n): it will be called the product observable and denoted
B(1) × B(2) × · · · × B(n).

Now we have the following facts.

Remark 6.1. A joint observable for the collection of regular observables{B(i) : M+
1 (�) →

M+
1 (4i), |i = 1, 2, . . . , n} is provided by the productB(1) × B(2) × · · · × B(n). This is an

immediate consequence of the definition of product observable.

Remark 6.2. If the regular observablesB(1), B(2), . . . , B(n) are sharp then there is no other
joint observable besides their product. To prove this fact consider a measurable rectangle
R := X1×X2×· · ·×Xn in the product space41×42×· · ·×4n and notice that the involved
effects have to meet the known propertyEB,R = ∧

i EB(i),Xi
whereB is an abbreviation

for B(1) × B(2) × · · · × B(n). Now supposeA is another joint observable: we would have
EA,R 6 EA,X1×42×···×4n

= EB(1),X1
, and similarly EA,R 6 EB(i),Xi

for i = 1, 2, . . . , n,
henceEA,R 6 EB,R. Since the last relation has to hold for every rectangle, it has to
be an equality, otherwise, viewingR as a member of a (finite) sequenceR, R′, R′′, . . .
of disjoint measurable rectangles which sum up to41 × 42 × · · · × 4n, we would get
EA,R + EA,R′ + EA,R′′ + · · · < EB,R + EB,R′ + EB,R′′ + · · ·: a contradiction since both sides
represent the unit function on�. ThusA = B = B(1) × B(2) × · · · × B(n).

Remark 6.3. If a consistent family of regular observables onM+
1 (�), with basic elements

B(1), B(2), . . . , B(n), contains only product observables (besides its basic elements) then the
productB(1) × B(2) × · · · × B(n) is a generating observable for the whole family. Indeed,
every marginal projection of a product observable is a product observable (see the analogous
property for measures stated in remark 3.7) and a regular observable is uniquely determined
by the values it takes at the set{δω|ω ∈ �} of Dirac measures.

A consistent family of regular observables onM+
1 (�) need not admit a generating

observable; it is different when we restrict ourselves to regular sharp observables, as
specified by the following theorem.

Theorem 4. A consistent familyO of regular sharp observables onM+
1 (�) admits a unique

generating observable which coincides with the productB(1) × B(2) × · · · × B(n) of all the
basic elements ofO.

Proof. In view of the property stated in remark 6.2, for every{i1, i2, . . . , ir} ⊆ {1, 2, . . . , n}
the set{B(i1), B(i2), . . . , B(ir )} of basic observables of the consistent familyO admits a
unique joint observable given by the productB(i1) × B(i2) × · · · × B(ir ). Theorem 3 above
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then ensures thatO admits a unique generating observable. Since a generating observable
is also a joint observable for the basic elements ofO we have, using again the property of
remark 6.2, that such a generating observable is the productB(1) × B(2) × · · · × B(n) of the
basic elements ofO. �

As discussed in [6], the standard classical statistical models make use only of sharp
observables: in view of the above theorem these standard models cannot display the Bell
phenomenon, nor the weak Bell phenomenon. But classical models can host also fuzzy
observables: for these models the Bell effect is not excluded.

A typical situation occurs with the classical extension of quantum mechanics that has
been shortly recalled in section 2. The quantum model based on the convex set of statesSQ

(the set of density operators on a Hilbert spaceH) admits the canonical classical extension
based on the setM+

1 (∂SQ) of the probability measures on the pure states ofSQ. The reduction
mapRM of equation (2) provides a one-to-one correspondence between the pure states of
SQ and the Dirac measures ofM+

1 (∂SQ) but it provides a many-to-one correspondence
when referred to non-pure states [6]. IfB is an observable onSQ then B̃ := B ◦ RM

is an observable onM+
1 (∂SQ), but of course not every observable onM+

1 (∂SQ) is the
representative of an observable onSQ. If O is a consistent family of observables onSQ

then the familyÕ obtained fromO by composing all its members withRM is a consistent
family of observables onM+

1 (∂SQ). Moreover, all probability distributions are preserved by
the classical extension, in the sense that given anyα ∈ SQ we haveBα = B̃β for everyβ

in the counterimage ofα underRM. From these facts it follows that whenever a consistent
family O of observables onSQ exhibits the Bell phenomenon so does the familyÕ of the
classical representatives of the elements ofO. In other words, all occurrences of the Bell
phenomenon in quantum mechanics are carefully reproduced in the classical extension.

Comparing the above conclusion with theorem 4 the consequence follows that the
classical representatives of the quantum observables cannot be regular and sharp: indeed it
is known [6] that they are regular and fuzzy.

According to remark 6.1 the basic elements ofÕ do admit a joint observable, no
matter whether the basic elements ofO do or do not. However, the joint observable of
the basic elements of̃O need not be a generating observable for the wholeÕ as outlined
in remark 5.3. The fact that the classical representatives of the observables onSQ do
not exhaust the observables onM+

1 (∂SQ) supports the question of whether̃O can admit
a generating observable whenO does not: this is an open possibility provided the family
of measuresM(O, α) does not exhibit the Bell phenomenon for anyα ∈ SQ, otherways
a contradiction would arise with the fact that the occurrence of the Bell phenomenon in
quantum mechanics is reproduced by the classical extension. So, there can be cases in
which the weak Bell phenomenon is not reproduced by the classical extension of quantum
mechanics. As a trivial example, consider the case of a familyO consisting of two non-
commuting quantum observables: it exhibits the weak Bell phenomenon but not the Bell
phenomenon (since two measures always have a joint measure), whileÕ does not exhibit
the Bell phenomenon nor the weak one.

An example of occurrence of the Bell phenomenon for classical observables can be
obtained by considering the consistent familyO given in equation (5) and looking at its
classical counterpart

Õ = {B̃(1), B̃(2), B̃(3), B̃(4), B̃(1,3), B̃(1,4), B̃(2,3), B̃(2,4)}.
Taking the singlet stateα as in section 5 one obtains a consistent family of measures
M(Õ, α) that reproduces precisely the example of equation (4), hence an example of Bell
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phenomenon. This example, though embedded into a classical framework, still preserves
a quantum root if one has in mind the usualEPR spin correlation, but it acquires a more
genuine classical flavour if one considers the macroscopical situation conjectured by Aerts
(see [20] also for further references) that imitates the quantum mechanical violation of
Bell inequalities (the randomness of some parameters of the observables considered there
corresponds to their fuzzyness).

The well known experiments on the violation of Bell inequalities, which show that
there are empirical probabilities not admitting a Kolmogorovian representation, are usually
interpreted as a proof of the impossibility of embedding the quantum description into a
classical framework. In view of the analysis made in this paper we can say that a classical
embedding is possible but fuzzy observables have to be called into play.

An example of the Bell phenomenon for a physical system strictly described within
standard classical mechanics cannot exist: indeed, the deterministic nature of classical
mechanics leaves no room for fuzzy observables, hence no room for the Bell phenomenon, as
stated by theorem 4 above. To call into play fuzzy observables one needs some randomness
in the measurement process, which could realistically simulate a complexity of interactions
or external influences not fully under control. In this sense one can look for the occurrence
of Bell phenomenon for a classical system (of course randomly behaved systems are also
commonly encountered in human sciences such as sociology, economics, psychology, etc).

To visualize a simple example think of a small ball, whose initial kinematical (pure)
state is uniquely specified, that undergoes an interaction having random features, and then
is recorded by one of an array of eight detectors, saya, b, c, d, e, f, g, h (one could have in
mind a ball rolling down an incline where a number of pins cause a random walk, and eight
boxes on the lower edge where the ball can fall). Different observables will correspond
to different random interactions (different pin patterns) suffered by the ball. We are going
to define a consistent family of observables and we first specify operationally their value
spaces. We shall deal with three two-valued observablesB(i), i = 1, 2, 3, and three four-
valued observablesB(i,j), i < j = 1, 2, 3: as in section 4 we denote4i = {ξ ′

i , ξ
′′
i } the

value space ofB(i), while we take the product space4i × 4j as the value space ofB(i,j).
Let us assume thatB(1) has outcomeξ ′

1 if the ball is detected by any one ofa, b, c, d and
outcomeξ ′′

1 if it is detected by any one ofe, f, g, h: we summarize this by writing

ξ ′
1 ↔ {a, b, c, d} ξ ′′

1 ↔ {e, f, g, h}.
Referring toB(2), B(3), andB(i,j) let similarly

ξ ′
2 ↔ {c, d, e, f } ξ ′′

2 ↔ {a, b, g, h} ξ ′
3 ↔ {b, c, f, g} ξ ′′

3 ↔ {a, d, e, h}
(ξ ′

1, ξ
′
2) ↔ {c, d} (ξ ′

1, ξ
′′
2 ) ↔ {a, b} (ξ ′′

1 , ξ ′
2) ↔ {e, f } (ξ ′′

1 , ξ ′′
2 ) ↔ {g, h}

(ξ ′
1, ξ

′
3) ↔ {b, c} (ξ ′

1, ξ
′′
3 ) ↔ {a, d} (ξ ′′

1 , ξ ′
3) ↔ {f, g} (ξ ′′

1 , ξ ′′
3 ) ↔ {e, h}

(ξ ′
2, ξ

′
3) ↔ {c, f } (ξ ′

2, ξ
′′
3 ) ↔ {d, e} (ξ ′′

2 , ξ ′
3) ↔ {b, g} (ξ ′′

3 , ξ ′′
3 ) ↔ {a, h}.

We complete the definition of these observable by specifying that acting on the (initial) state
of the ball they will produce the measures

µ(i)(ξ ′
i ) = µ(i)(ξ ′′

i ) = 1
2 i = 1, 2, 3

µ(1,i)(ξ ′
1, ξ

′
i ) = µ(1,i)(ξ ′′

1 , ξ ′′
i ) = 1

2 µ(1,i)(ξ ′
1, ξ

′′
i ) = µ(1,i)(ξ ′′

1 , ξ ′
i ) = 0 i = 2, 3 (6)

µ(2,3)(ξ ′
2, ξ

′
3) = µ(2,3)(ξ ′′

2 , ξ ′′
3 ) = 0 µ(2,3)(ξ ′

2, ξ
′′
3 ) = µ(2,3)(ξ ′′

2 , ξ ′
3) = 1

2.

It can be easily checked thatB(i,j) behaves as a joint observable ofB(i) and B(j),
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i < j = 1, 2, 3, as anticipated by the notation. Now, the consistent family

{B(1), B(2), B(3), B(1,2), B(1,3), B(2,3)} (7)

exhibits the Bell phenomenon: indeed the corresponding measures do not admit a generating
measure (on an eight-point space) since the pairsµ(1), µ(2) and µ(1), µ(3) are positively
correlated whereas the pairµ(2), µ(3) is negatively correlated. As expected from theorem 2
of section 4, we should contextually have the violation of some Bell-like inequality: indeed
the inequality

0 6 µ(1)(ξ ′
1) − µ(1,2)(ξ ′

1, ξ
′
2) − µ(1,3)(ξ ′

1, ξ
′
3) + µ(2,3)(ξ ′

2, ξ
′
3) 6 1

called the Bell–Wigner inequality in [2], is violated.
We make use of this example to add a couple of remarks.
One might ask what changes if the elements of randomness are shifted from the

observables to the state of the system, in other words if instead of considering fuzzy
observables acting on a pure state one takes sharp observables acting on a mixed state.
Of course we expect from theorem 4 that the above example will no longer carry any Bell
phenomenon. We know that a mixed state in a classical context has an unambiguous convex
decomposition into pure states, and pure states have no dispersion on sharp observables (the
strict connection between the simplex nature of the set of states and the absence of dispersion
for pure states has been discussed in [11]). So, let the state of the ball be a mixture1

2α+ 1
2β

of two pure statesα, β and let us preserve the operational structure of the value spaces of
the observables specified above. This mixed state could still be mapped into the measures
of equation (6), but as soon as we come to a pure state, sayα, we would unavoidably end
in some family of measures such as

B(i)α = δξ ′
i
, i = 1, 2, 3 B(i,j)α = δξ ′

i ,ξ
′
j
, i = 1, 2 B(2,3)α = δξ ′

2,ξ
′′
3

which is not a consistent family of measures in the sense of definition 1 sinceB(2,3) is no
longer a joint observable ofB(2), B(3). Thus we see that when we force the observables of
the above example into sharp ones the set of equation (7) looses the essential nature of a
consistent family of observables.

As a final remark let us outline that the Bell phenomenon emerging from the above
example has nothing to do with any notion of locality. This stresses the fact, partially
anticipated in section 4, that locality is not an ingredient of the Bell phenomenon: historically
the issue of locality became a concern only occasionally in the particular context of theEPR

correlation and of its interpretation inside the hidden variable philosophy.

Acknowledgment

One of the authors (S Bugajski) acknowledges the support provided by the Science Research
Committee (KBN, Warsaw) under the grant 2/2420/92/03.

References

[1] Bell J S 1964Physics1 195
[2] Pitowsky I 1989Quantum Probability—Quantum Logic (Lecture Notes in Physics 321)(Berlin: Springer)
[3] Beltrametti E G and Maczynski M J 1991J. Math. Phys.32 1280–6; 1993J. Math. Phys.34 4919–29



The Bell phenomenon in classical frameworks 261

[4] Beltrametti E G and Maczynski M J 1993 On the intrinsic characterization of classical and quantum
probabilitiesSymposium on the Foundations of Quantum Physicsed P Busch, P Lahti and P Mittelstaedt
(Singapore: World Scientific)

[5] Beltrametti E G and Bugajski S 1995Int. J. Theor. Phys.34 1221–9
[6] Beltrametti E G and Bugajski S 1995J. Phys. A: Math. Gen.28 3329–43
[7] Ali S T and Prugovecki E 1977J. Math. Phys.18 219–28
[8] Holevo A S 1982Probabilistic and Statistical Aspects of Quantum Theory(Amsterdam: North-Holland)
[9] Singer M and Stulpe W 1992J. Math. Phys.33 131–42

[10] Bugajski S 1993Int. J. Theor. Phys.32 389–98
[11] Beltrametti E G and Bugajski S 1993Int. J. Theor. Phys.32 2235–44
[12] Cassinelli G and Lahti P 1993J. Math. Phys.34 5468–75
[13] Busch P, Grabowski M and Lahti P 1995Operational Quantum Physics(Berlin: Springer)
[14] Stulpe W 1986 Bedingte Erwartungen und Stochastische Prozesse in der Generalisierten Wahrscheinlichkeit-

stheorieDoctoral DissertationBerlin
[15] Bugajski S, Hellwig K E and Stulpe W 1995 On fuzzy random variables and statistical maps, to be published
[16] Zadeh L A 1965 Information and Control8 338–53
[17] Misra B 1974Physical Reality and Mathematical Descriptioned C P Enz and J Mehra (Dordrecht: Reidel)

pp 455–76
[18] Billingsley P 1979Probability and Measure(New York: Wiley)
[19] Clauser J F and Horne M A 1974Phys. Rev.D 10 526–35
[20] Aerts D 1991Helv. Phys. Acta64 1–23


